

# Monolithic Amplifier pma3-34gln+

Mini-Circuits

50Ω 10 to 30 GHz

#### THE BIG DEAL

- Wideband, 10 to 30 GHz
- Usable down to 9 GHz
- High Gain, 25.5 dB typ. at 20 GHz
- Low NF, 1.6 dB typ. at 20 GHz
- P1dB, +10 dBm typ. at 20 GHz
- OIP3, +22 dBm typ. at 20 GHz
- Built-in Bias Tee and DC Blocks
- Patent Pending



Generic photo used for illustration purposes only

CASE STYLE: DQ1225

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our website for methodologies and qualification

#### **APPLICATIONS**

- 5G
- Fixed Satellite
- Mobile

#### **PRODUCT OVERVIEW**

The PMA3-34GLN+ is a PHEMT based wideband, low noise MMIC amplifier with a unique combination of high gain and low noise figure over a very broad bandwidth making it ideal for using as the first stage driver amplifier of receiver applications. This design operates on a single 4V supply, is matched to 50 Ohm and comes in a tiny plastic package (3 x 3 x 0.89mm), accommodating dense circuit board layouts.

#### **KEY FEATURES**

| Feature                       | Advantages                                                                                                                                   |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Low noise, 1.6 dB at 20 GHz   | Enables lower system noise figure performance                                                                                                |  |
| High Gain, 25.5 dB at 20 GHz  | Enables signal amplification without the need for multiple gain stage, minimizing the effect of subsequent stages on noise figure            |  |
| Built-in Bias Tee & DC Blocks | Minimizes the external component count & PC board space, making it less expensive and user friendly for system designers                     |  |
| 3 x 3mm 12-lead MCLP package  | Tiny footprint saves space in dense layouts while providing low inductance, repeatable transitions, and excellent thermal contact to the PCB |  |

REV. C ECO-011519 PMA3-34GLN+ GY/RS/CP/AM 240401



# Monolithic Amplifier pma3-34gln+

## **Mini-Circuits** 50 $\Omega$ 10 to 30 GHz

#### ELECTRICAL SPECIFICATIONS<sup>1</sup> AT +25°C, Vs = +4V AND R1=18Ω, UNLESS NOTED OTHERWISE

| <b>D</b>                                              | Condition (CUL) | Vs= +4 V |       |       |       |  |
|-------------------------------------------------------|-----------------|----------|-------|-------|-------|--|
| Parameter                                             | Condition (GHz) | Min.     | Тур.  | Max.  | Units |  |
| Frequency Range                                       | _               | 10       |       | 30    | GHz   |  |
|                                                       | 10              | _        | 1.9   | _     |       |  |
| Noise Figure                                          | 15              | -        | 1.8   | _     | dB    |  |
| Noise Figure                                          | 20              | _        | 1.6   | _     | UB    |  |
|                                                       | 30              | _        | 2.4   | _     |       |  |
|                                                       | 10              | 22.5     | 25.3  | 29.2  | dB    |  |
| Gain                                                  | 15              | 24.7     | 27.9  | 31.5  |       |  |
|                                                       | 20              | 22.2     | 25.5  | 31.1  |       |  |
|                                                       | 30              | _        | 18.2  | _     |       |  |
|                                                       | 10              |          | 13    |       | dB    |  |
| Input Return Loss                                     | 15              |          | 13    |       |       |  |
|                                                       | 20              |          | 21    |       |       |  |
|                                                       | 30              |          | 8     |       |       |  |
|                                                       | 10              |          | 12    |       | dB    |  |
| Output Return Loss                                    | 15              |          | 10    |       |       |  |
|                                                       | 20              |          | 10    |       |       |  |
|                                                       | 30              |          | 9     |       |       |  |
|                                                       | 10              |          | +8.5  |       |       |  |
| Output Power @ 1 dB compression                       | 15              |          | +9.5  |       | dBm   |  |
|                                                       | 20              |          | +10   |       | dbiii |  |
|                                                       | 30              |          | +11   |       |       |  |
|                                                       | 10              |          | +18.6 |       |       |  |
| Output IP3                                            | 15              |          | +22.1 |       | dBm   |  |
|                                                       | 20              |          | +22   |       |       |  |
|                                                       | 30              |          | +23.4 |       |       |  |
| Supply Voltage (V <sub>S</sub> )                      |                 | +3.75    | +4.0  | +4.25 | V     |  |
| Device Operating Current (I <sub>DD</sub> )           |                 |          | 68    | 112   | mA    |  |
| Device Current Variation vs. Temperature <sup>2</sup> |                 |          | -50   |       | µA/°C |  |
| Device Current Variation vs. Voltage                  |                 |          | 0.02  |       | mA/mV |  |
| Thermal Resistance, junction-to-ground lead           |                 |          | 106   |       | °C/W  |  |

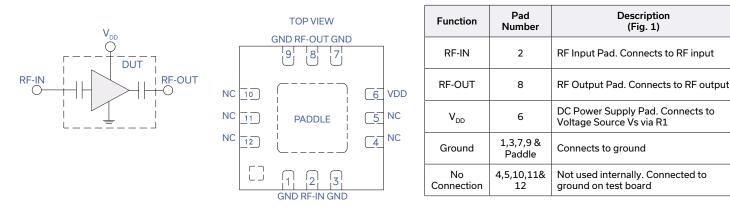
1. Measured on Mini-Circuits Characterization test board TB-PMA3-34GLN+ with thru-line loss being deducted. See Characterization Test Circuit (Fig. 1)

2. Device Current Variation vs. Temperature = (Current at 85°C - Current at -45°C)/130°C

#### **ABSOLUTE MAXIMUM RATINGS<sup>3</sup>**

| Parameter                           | Ratings                                          |  |  |  |
|-------------------------------------|--------------------------------------------------|--|--|--|
| Operating Temperature (ground lead) | -40°C to +85°C                                   |  |  |  |
| Storage Temperature                 | -65°C to +150°C                                  |  |  |  |
| Junction Temperature                | +146°C                                           |  |  |  |
| Total Power Dissipation             | 0.65W                                            |  |  |  |
| Input Power (CW), Vs= +4 V          | +23 dBm (5 minutes max.)<br>+13 dBm (continuous) |  |  |  |
| DC Voltage at Port 2 & 8            | +2 V                                             |  |  |  |
| DC Voltage (Vs)                     | +6 V                                             |  |  |  |

3.Permanent damage may occur if any of these limits are exceeded. Electrical maximum ratings are not intended for continuous normal operation.


# WIDEBAND, HIGH GAIN, LOW NOISE

# Monolithic Amplifier PMA3-34GLN+

Mini-Circuits

50Ω 10 to 30 GHz

#### SIMPLIFIED SCHEMATIC AND PAD DESCRIPTION



#### **RECOMMENDED APPLICATION AND CHARACTERIZATION TEST CIRCUIT**

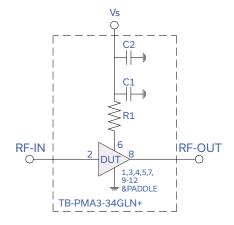



Fig 1. Application and Characterization Circuit

Note: This block diagram is used for characterization. (DUT is soldered on Mini-Circuits Characterization test board TB-PMA3-34GLN+) Gain, Return loss, Output power at 1dB compression (P1 dB), output IP3 (OIP3) and noise figure measured using Agilent's N5245A microwave network analyzer.

#### Conditions:

1. Gain and Return loss: Pin= -25dBm

2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, -5dBm/tone at output.

| Component | Size | Value  | Part Number        | Manufacturer |
|-----------|------|--------|--------------------|--------------|
| R1        | 0402 | 18 Ohm | RK73G1ETTP18ROF    | КОА          |
| C1        | 0402 | 5 pF   | GJM1555C1H5R0CB01D | Murata       |
| C2        | 0402 | 0.1 uF | GRM155R71C104KA88D | Murata       |

#### **PRODUCT MARKING**



Marking may contain other features or characters for internal lot control



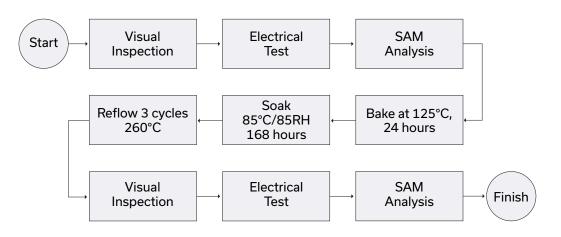
# Monolithic Amplifier pma3-34gln+

Mini-Circuits 5

### 50Ω 10 to 30 GHz

#### ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASH BOARD. TO ACCESS CLICK HERE

| Performance Data                                     | Data Table<br>graphs, s-parameter data set (.zip file)                   |
|------------------------------------------------------|--------------------------------------------------------------------------|
| Case Style                                           | DQ1225<br>Plastic package, exposed paddle, lead finish: Matte Tin        |
| Tape & Reel<br>Standard quantities available on reel | F66<br>7" reels with 20, 50, 100, 200, 500, 1K, 2K or 3K devices         |
| Suggested Layout for PCB Design                      | PL-674                                                                   |
| Evaluation Board                                     | TB-PMA3-34GLN+ (Without connectors)<br>TB-PMA3-34GLNC+ (With connectors) |
| Environmental Ratings                                | ENV08T1                                                                  |


#### **ESD RATING**

Human Body Model (HBM): Class 1A (250 to <500V) in accordance with ANSI/ESD STM 5.1 - 2001

#### **MSL RATING**

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

### **MSL TEST FLOW CHART**



#### NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

### Mini-Circuits