

Monolithic Amplifier

TSY-13LNB+

50Ω 0.03 to 1 GHz Bypass Mode Feature

THE BIG DEAL

- · Wideband, 0.03 to 1 GHz
- Low Noise Figure: 1.2 dB Typ.
- P1dB, +17.1 dBm Typ.
- Low Current and Low Voltage (+2.7 V and 7.7 mA)

+RoHS Compliant
The +Suffix identifies RoHS Compliance.
See our website for methodologies and qualifications

APPLICATIONS

- Wireless Base Station Systems
- · Test and Measurement Systems
- Multi-Band Receivers

PRODUCT OVERVIEW

TSY-13LNB+ (RoHS compliant) is an advanced Low Voltage, Low Current, Low Noise wideband Bypass amplifier fabricated using GaAs E-pHEMT technology offering extremely high dynamic range over a broad frequency range. It has integrated switches enabling users to bypass the amplifier. TSY-13LNB+ is enclosed in a tiny 8-lead 2x2 mm MCLP package for good thermal performance and ease of integration into dense circuit board layouts.

KEY FEATURES

Feature	Advantages
Ultra-Wideband, 0.03 to 1 GHz	Ideal for a wide range of receiver applications including military, commercial wireless, and instrumentation.
Low Voltage & Low Current, +2.7 V & 7.7 mA	Ideal for Battery operated systems
High IP3, +26.4 dBm Typ. at 0.5 GHz	Provides enhanced linearity over broad frequency range under high signal conditions.
Bypass Feature Low Insertion Loss	Unlike other amplifiers, insertion loss is low in Bypass mode. (For Bypass, both V_{DD} and V_{e} are set to 0 V.)
Compact Size, 2x2x1 mm	Saves space in dense system layouts. Low inductance, repeatable transitions, and excellent thermal contact.

REV. B ECO-025227 TSY-13LNB+ MCL NY 250424

Monolithic Amplifier TSY-13LNB+

0.03 to 1 GHz Bypass Mode Feature 50Ω

ELECTRICAL SPECIFICATIONS AT +25 °C, Zo= 50Ω & V_{DD} = +2.7 V, UNLESS NOTED OTHERWISE

Parameter	Condition	Condition Amplifier - ON			Amplifier - Bypass Units	
	(GHz)	Min. Typ.		Max.	Тур.	
Frequency Range		0.03		1	0.03-1	GHz
	0.03		1.3		0.5	
	0.3		1.2		0.6	
Noise Figure	0.5		1.2		0.8	dB
	0.8		1.4		1.8	
	1.0		1.4		1.9	
	0.03		15.3		-0.5	
	0.3		15.1		-0.6	
Gain	0.5	13.3	14.7	16.3	-0.8	dB
	0.8		13.9		-1.8	
	1.0		13.1		-1.9	
	0.03		13		19	
	0.3		14		19	
Input Return Loss	0.5		14		14	dB
	0.8		11		10	
	1.0		10		8	
	0.03		16		18	
	0.3		20		18	
Output Return Loss	0.5		18		13	dB
	0.8		16		9	
	1.0		14		7	
	0.03		+15.9		+1.2	
	0.3		+16.8		+2.6	
Output Power at 1 dB Compression, AMP-ON ²	0.5		+17.1		+2.7	dBm
	0.8		+17.3		+1.9	
	1.0		+17.6		+3.1	
	0.03		+25.6		+24.9	
	0.3		+27.5		+27.6	
Output IP3 ³	0.5		+26.4		+28.4	dBm
	0.8		+27.8		+26.9	
	1.0		+24.7		+30.4	
Device Operating Voltage (V _{DD}) ⁴		+2.5	+2.7	+2.9	0	V
Device Operating Current (I _D +I _e)			7.7	10.6	0	mA
Enable Voltage (V _e) ⁴		+2.5	+2.7	+2.9	0	V
Device Current Variation vs. Temperature ⁵			1.5			μΑ/°C
Device Current Variation vs. Voltage			0.0067			mA/mV
Thermal Resistance, Junction-to-Ground Lead			229			°C/W

^{1.} Measured on Mini-Circuits Characterization Test Board TB-943-13LNB+. See Characterization Test Circuit (Fig. 1).

^{2.} Current increases to 28-54 mA typ. at P1dB.

^{3.} Tested at P_{OUT} = +6 dBm/tone.

^{4.} V_{DD} is always connected to V_{e} .

^{5. ((}Current at +85°C - Current at -45°C)/130)

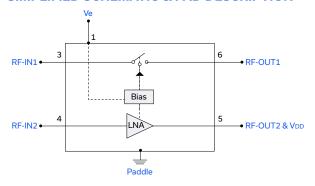
Monolithic Amplifier TSY-13LNB+

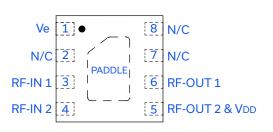
0.03 to 1 GHz Bypass Mode Feature 50Ω

SWITCHING SPECIFICATIONS

Parameter		Min.	Тур.	Max.	Units	
Amplifier ON to Bypass	OFF TIME (50% Control to 10% RF)		6		c	
Ampliner On to bypass	FALL TIME (90% to 10% RF)		7		μS	
A I'f D I ON	ON TIME (50% Control to 90% RF)		59		μS	
Amplifier Bypass to ON	RISE TIME (10% to 90% RF)		20			
Control Voltage Leakage			443		mV	

ABSOLUTE MAXIMUM RATINGS⁶


intended for continuous normal operation.


ADSOLOTE MAXIMOM RATINGS				
Parameter		Ratings		
Operating Temperature (Ground Lead)		-40°C to +85°C		
Storage Temperature		-65°C to +150°C		
Total Power Dissipation		0.2 W		
I I D	Amplifier - ON	+10 dBm (continuous), +23 dBm (5 min. max)		
Input Power	Amplifier Bypass	+15 dBm (continuous), +22 dBm (5 min. max)		
DC Voltage V _{DD} (Pad 5)		+6 V		
DC Voltage V _e (Pad 1)		+6 V		

DC Voltage V _e (Pad 1)	+6 V
6. Permanent damage may occur if any of these lim	nits are exceeded. Electrical maximum ratings are not

	Min.	Тур.	Max.	Units
Amplifier-ON (V _{DD} , V _e)	+2.5	+2.7	+2.9	V
Amplifier-Bypass (V _{DD} , V _e)			+0.3	V

SIMPLIFIED SCHEMATIC & PAD DESCRIPTION

Function	Pad Number	Description (See Figure 1)
RF-IN 1 & RF-IN 2	3,4	RF-Input pads. Pad 4 is connected to Pad 3 via two 0.1 µF Capacitors.
RF-OUT 1 & RF-OUT2 & V _{DD}	5,6	RF-Output pads. Pad 6 is connected to Pad 5 via 0.1 µF Capacitor.
Voltage Enable (V _e)	1	Enable Voltage pad. V_e is always connected to V_{DD} . For amplifier bypass, V_{DD} & V_e should be turned OFF simultaneously.
Ground	Paddle	Connect to ground. Use via holes as shown in "Suggested Layout for PCB Design" to reduce ground path inductance for best performance.
N/C	2,7,8	No connection

Monolithic Amplifier TSY-13LNB+

0.03 to 1 GHz Bypass Mode Feature 50Ω

CHARACTERIZATION TEST CIRCUIT

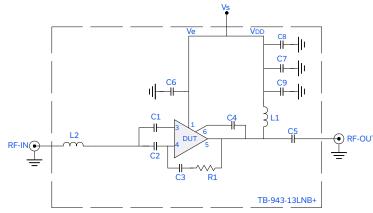
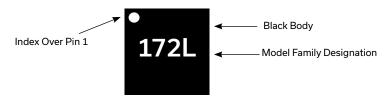


Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-943-13LNB+) Gain, Return Loss, Output Power at 1 dB Compression (P1dB), Output IP3 (OIP3) and Noise Figure measured using Agilent's N5242A PNA-X microwave network analyzer.

Conditions:

- Conditions.


 1. Gain and Return loss: P_{IN} = -25 dBm

 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, +6 dBm/tone at output.

 3. Switching Time RF Signal: P_{IN} = -10 dBm at 500 MHz. V_{DD} = V_e = 0 to +2.5. / +2.7 / +2.9 V, Pulse Signal= 500 Hz, 50% duty cycle.

Component	P/N	Supplier	Value	Size
L1	1008CS-102XJLC	Coilcraft	1uH	0.115" x 0.11"
L2	LQG15HS3N0S02D	Murata	3nH	0402
C1 to C8	GRM155R71C104KA88D	Murata	0.1uF	0402
C9	GRM1555C1H102JA01D	Murata	1000pF	0402
R1	RK73H1ETTP4320F	KOA	432 Ω	0402

PRODUCT MARKING

Marking may contain other features or characters for internal lot control.

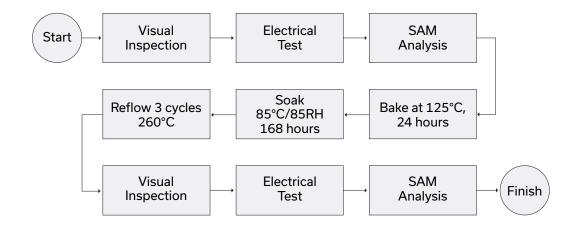
Monolithic Amplifier TSY-13LNB+

0.03 to 1 GHz Bypass Mode Feature 50Ω

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASHBOARD. TO ACCESS

CLICK HERE

	Data Table
Performance Data	Swept Graphs
	S-Parameter (S2P Files) Data Set (.zip file)
Case Style	MC1631-1 Plastic package, exposed paddle, Lead Finish: Matte-Tin
Tape & Reel Standard Quantities Available on Reel	F66 7" Reels with 20, 50, 100, 200, 500, 1000, 2000, or 3000 devices
Suggested Layout for PCB Design	PL-536
Evaluation Board	TB-943-13LNB+
Environmental Ratings	ENV08T1


ESD RATING

Human Body Model (HBM): Class 1A (Pass 250 V) in accordance with ANSI/ESD STM 5.1 - 2001 Machine.

MSL RATING

MMoisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL TEST FLOW CHART

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/

